Minimal relations and the Diophantine Frobenius problem in embedding dimension three
نویسندگان
چکیده
منابع مشابه
An Estimate for Frobenius’ Diophantine Problem in Three Dimensions
We give upper and lower bounds for the largest integer not representable as a positive linear combination of three given integers, disproving an upper bound conjectured by Beck, Einstein and Zacks.
متن کاملThe Frobenius problem for numerical semigroups with embedding dimension equal to three
If S is a numerical semigroup with embedding dimension equal to three whose minimal generators are pairwise relatively prime numbers, then S = 〈a, b, cb − da〉 with a, b, c, d positive integers such that gcd(a, b) = gcd(a, c) = gcd(b, d) = 1, c ∈ {2, . . . , a− 1}, and a < b < cb− da. In this paper we give formulas, in terms of a, b, c, d, for the genus, the Frobenius number, and the set of pseu...
متن کاملOn a Linear Diophantine Problem of Frobenius
Let a1, a2, . . . , ak be positive and pairwise coprime integers with product P . For each i, 1 ≤ i ≤ k, set Ai = P/ai. We find closed form expressions for the functions g(A1, A2, . . . , Ak) and n(A1, A2, . . . , Ak) that denote the largest (respectively, the number of) N such that the equation A1x1 + A2x2 + · · · + Akxk = N has no solution in nonnegative integers xi. This is a special case of...
متن کاملThe diophantine problem of Frobenius: A close bound
The conductor of n positive integer numbers a l,a2, ... ,an' whose greatest coII1mon divisor is equal'to I, is'defmed as the th.e minimal K, such that for every m ~K , the equation a1x 1+a2X 2+ ... +an Xn=m, h!ls a solution over the nOI}negative integers. In this notewe give a polYIlomial aigorithm computing'a close bound ~ for the conductor K o( n given positive integers, when n is fixed. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2017
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2016.12.012