Minimal relations and the Diophantine Frobenius problem in embedding dimension three

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Estimate for Frobenius’ Diophantine Problem in Three Dimensions

We give upper and lower bounds for the largest integer not representable as a positive linear combination of three given integers, disproving an upper bound conjectured by Beck, Einstein and Zacks.

متن کامل

The Frobenius problem for numerical semigroups with embedding dimension equal to three

If S is a numerical semigroup with embedding dimension equal to three whose minimal generators are pairwise relatively prime numbers, then S = 〈a, b, cb − da〉 with a, b, c, d positive integers such that gcd(a, b) = gcd(a, c) = gcd(b, d) = 1, c ∈ {2, . . . , a− 1}, and a < b < cb− da. In this paper we give formulas, in terms of a, b, c, d, for the genus, the Frobenius number, and the set of pseu...

متن کامل

On a Linear Diophantine Problem of Frobenius

Let a1, a2, . . . , ak be positive and pairwise coprime integers with product P . For each i, 1 ≤ i ≤ k, set Ai = P/ai. We find closed form expressions for the functions g(A1, A2, . . . , Ak) and n(A1, A2, . . . , Ak) that denote the largest (respectively, the number of) N such that the equation A1x1 + A2x2 + · · · + Akxk = N has no solution in nonnegative integers xi. This is a special case of...

متن کامل

The diophantine problem of Frobenius: A close bound

The conductor of n positive integer numbers a l,a2, ... ,an' whose greatest coII1mon divisor is equal'to I, is'defmed as the th.e minimal K, such that for every m ~K , the equation a1x 1+a2X 2+ ... +an Xn=m, h!ls a solution over the nOI}negative integers. In this notewe give a polYIlomial aigorithm computing'a close bound ~ for the conductor K o( n given positive integers, when n is fixed. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2017

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2016.12.012